

Touch Interaction and
Touch Gestures

Types of Touch
l All have very different interaction properties:

l Single touch
l Multitouch: multiple fingers on the same hand

l Multihand: multiple fingers on different hands

l Multiperson: multiple hands from multiple people! (Collaborative multitouch)

2

Single-Touch Interaction

3

Single finger touch gestures
l Typically inputs used for command input,

not content input

l Most common: press/tap for selection
l Not really much of a “gesture” at all

l Slightly more complex:
l Double-tap to select

l Double tap, hold, and drag to move windows
on OS X

l Tap, hold and drag to select text on the iPad

l Note: some of these don’t require a screen,
just a touchable surface

4

Other examples
l One-finger:

l Special interactions on lists, etc.
l Example: swipe over mail message to delete

l Specialized feedback for confirmation

l Still no good affordances though.

l Non-finger gestures?
l Surface--use edge of hand for special controls
l Technically “single touch,” although most hardware

that can support this is probably multitouch
capable

5

Example multitouch gestures
(cont’d)

 Touchscreen

 iPhone, Surface

 One-finger:

 Special interactions on lists, etc.

 Example: swipe over mail message to delete

 Specialized feedback for confirmation

 Still no good affordances though.

 Two-finger:

 Rotate, scale same as before

 Non-finger gestures?

 Surface--use edge of hand for special controls

29

Multi-Touch Interaction

6

Multitouch Gestures
l Multitouch: responsiveness to multiple points of input, not just a single point.

l Extra hardware required!
l E.g., Many single-touch systems will simply average multiple points of input.

l Allows a much richer and expressive vocabulary of gestures
l Multiple fingers on the same hand

l Multiple fingers of different hands

l Multiple fingers by different people (when using table-scale or wall-scale devices, typically)

l For this section, we’re going to mainly be talking about multiple fingers on the same
hand.

7

Example multitouch gestures
l Two-finger:

l Scale: pinch, expand two fingers
l Rotate: two points lets you do

intuitive rotation

l Scroll window on OS X

l Three-finger:
l Three-finger swipe: advance forward, backward

(in web browser, photo browser, etc.)

l Four-finger:
l Task management--swipe left and right to bring up task manager, up and down to hide/

show all windows on OS X

l Swipe up to bring up multitasking controls on iPad; swipe left/right to change apps

l Five-finger
l Five-finger pinch to return to homescreen on iPad

l Note: some of these may be used without a touchscreen (e.g., directly on a
multitouch trackpad)

8

Pros and cons of many of these?
l Advantages of multitouch

l Expressiveness: In many cases, very natural interaction that’s a close map to what we do in
the “real world”
l E.g., two fingered rotation

l Parallelism: Allows for more degrees of freedom: higher dimensionality input, but in a very
natural way.

l Two-fingered rotation: specifies amount of rotation, pivot point, all in one simple
gesture; can combine with scaling very naturally.

l Chief disadvantage of multitouch:
l Poor/nonexistent affordances in many cases

l How do you know what you can do?
l Depends on education (reading a manual, or contextual help, or suggestions) for

people to have access to these.

l Lots of interesting work to be done in defining interaction techniques in
multitouch--better affordances, feedback, specific techniques for
accomplishing specific tasks (we’ll see some when we talk multi-hand)

9

Two-Handed Interaction and Magic
Lenses/Toolglasses

Spot the difference between
these examples and GUIs
l A student turns a page of a book while taking notes
l A driver changes gears while steering a car
l A recording engineer fades out the drums while bringing up the strings

l [Examples ref. Buxton]

11

Quick Motivation

l The desktop paradigm does not demand much
(physically) of its user.

l Then again, it doesn’t take advantage of the physical
abilities of the user either.

l Many tasks are handled more easily with multiple
hands.

12

Two-handed (Bi-manual)
Interaction
l Potential advantages:

l Expressiveness: do things in a more natural way, use hands the way we use
them in the real world
l E.g., one finger in a book to hold its place, while thumbing through other

pages
l Parallelism: multiple actions at the same time. Need to be coordinated,

though, to prevent cognitive burden!

l E.g., there’s a reason we don’t use two mice at the same time!
l Also need to understand relative roles of dominant/non-dominant hands

13

Two-handed (Bi-manual)
Interaction
l Some examples:
l Simplest case today: two hands on a keyboard...

l Independent actions from both hands (hitting keys)
l Only coordinated in time; but each hand interacts with distinct keys
l Also: controlling sliders on a mixing board, playing the violin

14

Two-handed (Bi-manual)
Interaction
l In the “real world,” though, most often hands are working

cooperatively--working together to accomplish a task. Two forms:
l Symmetric. Inputs perform similar but independent actions to accomplish

the same task.
l Examples: positioning line endpoints or rectangle bounds on a screen,

stretching a rubber band.
l Asymmetric. Inputs play complementary but disparate roles; one inputs role

must be performed in order for the other input to perform its role (also called
compound motion).
l Examples: opening a jar (the hand grasping the lid can’t perform its role of

rotation unless the non-dominant hand holds the jar in place). Also: drawing/
drafting, lab work, surgeons, dentists, etc...

15

Kinematic Chain Theory
l Most of this discussion is out of scope for the class, but KCT describes

how dominant and non-dominant hands work together in asymmetric
cooperative action

l Non-dominant hand provides the frame of reference (e.g., moving the
drawing paper to the dominant hand)

l Dominant hand acts at a finer spatial-temporal scale (smaller, quicker
motions) than the non-dominant hand (larger, coarse-grained motions)

l Non-dominant hand initiates the action, dominant hand terminates it

16

Some iPad Examples (from
Keynote)

l “Normal” multitouch systems can support multi-hand input (if they’re large
enough, and stably positioned of course)

l Constrained Drag: touch and hold one finger anywhere on screen while you drag
an object with the other hand; constrains movement to a perfectly
straight line

l Multi-select: tap and hold one object to select it, then tap other objects
with another finger

l Match sizes: hold one object while you resize
another one; snaps to size of held object

l Move text insertion point by word (two finger swipe)
or line (three finger swipe)

l Nudge: move an object by single pixel increments by holding it
with one finger and then swiping with another finger (nudge
by higher numbers of pixels by using more fingers)

17

Quick Quiz
l What was the first use of two-handed input with a computer?

18

Quick Quiz
l What was the first use of two-handed input with a computer?

l Douglas Englebart in 1968
l Point with mouse
l Operate chord keyboard

19

Next Quiz
l Why has the PC so committed to having a single pointing device?

20

Next Quiz
l Why has the PC so committed to having a single pointing device?

l Lots of historical baggage
l Technical: Early systems couldn’t keep up with multiple continuous devices
l Experimental: Fitts Law has only two parameters, target distance and size;

performance studies typically focus on just a single hand

21

Lots of Recent Interest
l N. Matsushita, Y. Ayatsuka, J. Rekimoto. Dual touch: a two-handed interface for pen-based

PDAs. UIST 2000, pp. 211-212.
l Coordinated pen-and-thumb interaction without any additional technology on contact

closure PDA (e.g., Palm or PocketPC device).
l A GUI Paradigm Using Tablets, Two Hands and Transparency. G Fitzmaurice, T. Baudel, G.

Kurtenbach, B. Buxton. Alias/Wavefront, Toronto. CHI 97
l K. Hinckley, M. Czerwinski and M. Sinclair. Interaction and modeling techniques for desktop

two-handed input. UIST ’98 pp. 49-58.
l T. Grossman, G. Kurtenbach, G. Fitzmaurice, A. Khan, B. Buxton. Creating principle 3D curves

using digital tape drawing. CHI 2002
l S. Chatty. Extending a graphical toolkit for two-handed interaction. UIST ’94, pp. 195-204.
l MID: Multiple Input Devices

l http://www.cs.umd.edu/hcil/mid/

22

Toolglasses and Magic Lenses
l GUI interaction technique meant to capture a common metaphor for two-

handed interaction
l Basic idea:

l One hand moves the lens
l The other operates the cursor/pointer

l “See through” interfaces
l The lens can affect what is “below” it:

l Can change drawing parameters
l Change change input that happens “through” the lens

l For the purpose of this lecture, I’m combining both of these under the
term “magic lens”

23

Quick Examples
l Magnification (and arbitrary transforms)
l Render in wireframe/outline
l Object editing

l E.g., click-through buttons: position color palette over object, click through the
palette to assign the color to the object

l Important concept: lenses can be composed together
l E.g., stick an outline lens and a color palette lens together to change the color

of an object’s outline

l Second important concept: lenses don’t just have to operate on the final
rendered output of the objects below them
l Can take advantage of application data structures to change presentation and

semantics

24

25

Reading:
 Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton and Tony

D. DeRose, “Toolglass and magic lenses: the see-through
interface”, Proceedings of the 20th Annual Conference on
Computer Graphics, 1993, Pages 73-80.

http://www.acm.org/pubs/articles/proceedings/graph/166117/p73-bier/p73-bier.pdf

26

Note...

l These techniques are patented by Xerox

l Don’t know scope of patent, but its likely you would need to
license to use them commercially ... if the patents haven’t
expired

27

Advantages of lenses

l In context interaction
l Little or no shift in focus of attention

l tool is at/near action point
l Alternate views in context and on demand

l can compare in context
l useful for “detail + context” visualization techniques

28

Detail + context visualization

l Broad category of information visualization techniques
l Present more detail in area of interest

l More than you could typically afford to show everywhere
l Details may be very targeted

l Present in context of larger visualization

29

Advantages of lenses

l Two handed interaction
l Structured well for 2 handed input

l non-dominant hand does coarse positioning (of the lens)
§ examples also use scroll wheel with non-dominant hand

§ scaling: again a coarse task

l dominant hand does fine work

30

Advantages of lenses

l Spatial modes
l Alternative to more traditional modes
l Use “where you click through” to establish meaning
l Typically has a clear affordance for the meaning

l lens provides a “place to put” this affordance (and other
things)

31

Examples

l Lots of possible uses, quite a few given in paper and video

l Property palettes
l Click through interaction
l Again: no context shift + spatial mode

32

Examples

l Clipboards
l Visible

l invisibility of typical clipboard is a problem
l Lots of interesting variations

l multiple clipboards
l “rubbings”

l Can do variations, because we have a place to represent them & can
do multiple specialized lenses

33

Examples

l Previewing lenses
l Very useful for what-if
l Can place controls for parameters on lens

l Selection tools
l Can filter out details and/or modify picture to make selection a

lot easier

34

Examples

l Grids
l Note that grids are aligned with respect to the object space not

the lens

Examples
l Debugging lenses

l Show hidden internal structure in a GUI
l Not just surface features

l “Debugging Lenses: A New Class of Transparent Tools for User Interface
Debugging,” Hudson, Rodenstein, Smith. UIST’97

35

36

Implementation of lenses

l Done in a shared memory system
l All “applications” are in one address space
l Can take advantage of application-internal data structures

l Different than OS-provided magnifying glass, for example
l Like one giant interactor tree
l Also assumes a common command language that all applications

respond to

37

Implementation of lenses

l Lens is an additional
object “over the top”
l Drawn last
l Can leave output from below and add to it (draw over top)
l Can completely overwrite output from below

l can do things like “draw behind”

Root

Lens
App

App

App

38

Implementation of lenses

l Input side
l Changed way they did input

l originally used simple top-down dispatch mechanisms
l now lens gets events first

§ can modify (e.g., x,y) or consume

l possibly modified events then go back to root for “normal
dispatch

39

Implementation of lenses

l Input side
l Special mechanism to avoid sending events back to lens
l Also has mechanism for attaching “commands” to events

§ assumes unified command lang

l command executed when event delivered

40

Implementation of lenses

l Output side
l Damage management

l Lenses need to be notified of all damage
l Lens may need to modify area due to manipulation of output

(e.g. mag)

41

Implementation of lenses

l Output side
l Redraw

l Several different types of lenses
l Ambush
l Model-in / model-out
l Reparameterize and clip

42

Types of lens drawing

l Ambush
l catch the low level drawing calls

l typically a wrapper around the equivalent of the Graphics
object

l and modify them
l e.g. turn all colors to “red”

l Works transparently across all apps
l But somewhat limited

43

Types of lens drawing

l Reparameterize & clip
l similar to ambush

l modify global parameters to drawing
l redraw, but clipped to lens
l best example: scaling

44

Types of lens drawing

l Model-in / model-out
l create new objects and transform them

l transforms of transforms for composition
l very powerful, but…

l cross application is an issue
l incremental update is as issue

45

Lenses in subArctic

l Implemented with special
“lens parent” & lens
interactors

l Input
l Don’t need to modify input dispatch
l Lens may need to change results of picking (only positional is

affected)
l in collusion with lens parent

Lens
Parent

Lens

Root

46

Lenses in subArctic

l Damage management
l Lens parent forwards all damage to all lenses
l Lenses typically change any damage that overlaps them into

damage of whole lens area

47

Lenses in subArctic

l Replace vs. draw-over just a matter of clearing before drawing
lens or not

l Two kinds of output support
l Ambush

l Via wrappers on drawable
l Extra features in drawable make ambush more powerful

l Traversal based (similar to MIMO)

48

Ambush features in drawable

l boolean start_interactor_draw()
l end_interactor_draw()

l called at start/end of interactor draw
l allows tracking of what is being drawn
l drawing skipped if returns false

l allows MIMO effects in ambush
l isolated drawing
l predicate selected drawing

49

Lenses in subArctic

l Also support for doing specialized traversal
l walk down tree and produce specialized output
l can do typical MIMO effects

50

Example: Debugging Lens

Lenses in Swing
l Two things to do:

l #1: Make sure that your lens is drawn over other components
l Easiest way: add a special component as the “Glass Pane” of a JFrame
l GlassPane is hidden by default; when visible, it’s like a sheet of glass over the

other parts of your frame.
l Generally, set a custom component as the glass pane with a

paintComponent() method to cause things to be drawn
§ myFrame.setGlassPane(myNewLensPane)

§ myNewLensPane.setVisible(true)

l #2 Create your lens class itself
l Extend JCompnoent
l Implement whatever listeners you want to get events for
l Implement paintComponent so that when you draw yourself, you actually

draw components under you (however you want to draw them) -- note that
the lens itself likely won’t have children

51

Swing GlassPane
l Hidden, by default
l Like a sheet of glass over all other parts of the JFrame; transparent unless

you set it to be a component that has an implementation of
paintComponent()
l Don’t actually have to do anything in paintComponent unless you want the

pane itself to be visible

l Useful when you want to catch events or paint over an area that already
contains components
l E.g., deactivate mouse events by installing a class pane that intercepts the

events

52

GlassPane Resources
l Tutorial on how to use the various panes in a JFrame:

l http://java.sun.com/docs/books/tutorial/uiswing/components/rootpane.html

l Example of using glass pane:
l http://blog.elevenworks.com/?p=6

l Another example of using glass panes for graphical overlay:
l http://weblogs.java.net/blog/joshy/archive/2003/09/swing_hack_3_ov.html

53

Making a Lens
l Basically, a specialized component that’s a child of the glass pane

l Output:
l The lens should draw itself (title bar, gizmo to make it go away, its borders)
l Also draw the components in the frame that are under it, although perhaps

not in their original form
l Input:

l Redispatch events to components in the content pane
l May need to tweak their coordinates/details (transform to the new

component’s coordinate system, for example)
§ See SwingUtilities.convertMouseEvent(), SwingUtilities.convertPoint(), etc.

54

Lens Resources
l Swing Hacks, hack #56: Create a Magnifying Glass Component
l Blog entry on magic lenses in Swing:

l http://weblogs.java.net/blog/joshy/archive/2003/11/swing_hack_5_a.html

l Lens details from an earlier version of this class:
l http://www3.cc.gatech.edu/classes/AY2001/cs4470_fall/a4.html

l Passing events through to underlying components
l Tweaking component drawing

l SwingUtilities.paintComponent
l Lets you call a component’s paint method on an arbitrary graphics object (e.g.,

one of your own choosing; can disable/reimplement certain functions, look at
the call stack, etc., in drawing)

l Drawing the lens itself
l Consider using JInternalFrame as the base class for your Lens, as you’ll get

some basic window decorations.
55

Collaborative Multitouch
(Very Briefly...)

56

Collaborative multitouch
l Most useful for large surfaces (tables, walls)

instead of phones
l Examples:

l Microsoft Surface

l Mitsubishi DiamondTouch table

l Nottingham Dynamo

l Special issues:
l Orientation (for table-top displays)
l Can you tell which finger belongs to whom?

57

Collaborative multitouch

 Most useful for large surfaces (tables, walls)
instead of phones

 Examples:

 Microsoft Surface

 Mitsubishi DiamondTouch table

 Nottingham Dynamo

 Special issues:

 Orientation (for table-top displays)

 Can you tell which finger belongs to whom?

30

Collaborative multitouch

 Most useful for large surfaces (tables, walls)
instead of phones

 Examples:

 Microsoft Surface

 Mitsubishi DiamondTouch table

 Nottingham Dynamo

 Special issues:

 Orientation (for table-top displays)

 Can you tell which finger belongs to whom?

30

Collaborative multitouch

 Most useful for large surfaces (tables, walls)
instead of phones

 Examples:

 Microsoft Surface

 Mitsubishi DiamondTouch table

 Nottingham Dynamo

 Special issues:

 Orientation (for table-top displays)

 Can you tell which finger belongs to whom?

30

Opportunities for expressiveness
l Use edge of hand to bring up “secret” dialog box (Wu & Balakrishnan, 2003)
l Augment with additional sensing

(e.g., face recognition) to determine
user identity

58

The distance between the two fingers determines the
granularity of adjustment. In other words, the closer the
fingers are to one another, the smaller the change in angle.
The three sets of arrows displayed, each of different size,
serve as a visual indicator of this property.

 Single Hand Techniques
Figure 8: Vertical hand sweeping. (a) Initial position.
(b) When the hand makes contact with furniture, the
pieces move with it. (c) Final position after sweeping.

Flat Hand
A user can temporarily rotate the room layout by placing a
hand flat on the table and translating that hand. As the line
between the centre of the hand and the centre of the room
rotates, the public space pivots in the middle and turns with
it. Once the flat hand is placed on the table, the planner
need not keep their hand flat to continue the rotation, as
long as they continue touching the surface (i.e., the flat
hand serves mainly as a quick way to choose the rotation
action). This allows the user to adopt a more comfortable
hand posture – similar to the case of the freeform rotation
of objects when the pivot finger is lifted. When the user
removes contact from the surface, the room springs back
into its original orientation.

Horizontal Hand
The side of the hand can be placed on the table such that
the contact surface forms a horizontal line. This gesture
creates a rectangular box below the hand through which
objects within the box display their properties (Figure 9);
this is similar to the idea of Magic Lens [1]. As the
horizontal hand moves, the box follows below it.
It is interesting to note that when a user performs this
gesture, the hand acts as a barrier that blocks others from
seeing the displayed information. Although others could
view any information projected on the tabletop if they tried
hard enough, the horizontal hand gesture provides some
amount of privacy on the tabletop. To violate this privacy,
another user would have to stand up and look over the first
user’s horizontally held hand, which would be a social faux
pas. We imagine that this gesture may also be useful as a
means of accessing a set of menus or to cast private votes.
By incorporating both voting and regular menu selections
through this same gesture, other users may not recognize
hidden negotiations since they would appear as regular
menu actions. This is an interesting issue to explore in the
future as it points towards the notion of supporting
competitive behaviour within an overall collaborative
application framework.

As an alternative method for room layout rotation, users
could turn their hand in place on the surface, using the hand
direction to indicate rotation angle. This was not done
because it did not map well to real world situations where
large blueprints are physically manipulated by sliding the
hand about. Another possible technique is to not have the
room pivot at the centre but instead have it freely arranged
by the orientation and location of the hand, much like
grabbing a large blueprint and re-orientating it by moving
and turning the hand. Though hand orientation is difficult
to accurately detect using DiamondTouch, it is possible
with SmartSkin.
Our observations of people interacting on the table with our
application indicated that they respected each other’s space
when working in the common area. Thus we did not
implement any technological solution to deal with
contention or conflict resolution, leaving it up to the users
to resolve via usual social norms. In our current
implementation, when both planners try to rotate the room
at the same time, RoomPlanner averages the angles
expressed by both planners. However, other techniques
such as halting the rotation when there is contention may be
viable should a technological solution be necessary.

Figure 9: The horizontal hand physically blocks
others from seeing the box of furniture properties
below it.

Vertical Hand
When the side of a hand is placed on the surface of the
table oriented such that the contact surface is a vertical line,
the user can sweep furniture pieces. As objects make
contact with the hand, they are pushed aside and are swept
at the same pace as the movement of the hand (Figure 8).
This parallels the real world action of pushing physical
material on a regular tabletop. This gesture can be
independently applied to the private and public spaces so
that when a planner sweeps furniture in their private space,
objects in the public area are not moved. The user specifies
to which space the intended action is to be applied by
simply performing the gesture within that space.

Tilted Horizontal Hand
The top-down projection setup enables advantages that
would not be possible if the display were back projected.
For example, when a piece of paper is placed on the table,
objects are projected on top rather than being occluded.
Similarly, when a user’s hand occludes the surface, it can
act as display area.
When the hand is in the horizontal position, tilting the top
of the hand away from the user is a gesture that allows the
system to project private information onto the hand. As this

Volume 5, Issue 2 198

